

Magnetic Field Limits of Superconducting RF Cavities

Sam Posen Associate Scientist, FNAL Technical Division

Workshop on Microwave Cavity Design for Axion Detection

August 26, 2015

Some images from linearcollider.org

Superconducting RF Cavities

- Muscle of many large particle accelerators
- RF input power

 accelerating electric field

SRF Accelerator Cavity

- SRF cavity: high quality EM resonator
- Particle beam gains energy as it passes through

Slowed down by factor of approximately 4x109

- Electric field provides acceleration
- Magnetic field can't be avoided

- How high in field can we take SRF cavities?
- State of the art niobium cavities are limited by peak surface magnetic field

Superconductors and Magnetic Fields

 For relatively small applied magnetic fields, superconductors expel flux: Meissner state

 At higher fields, Type II superconductors allow flux to enter in packets: Vortex state

Superconductors and Magnetic Fields

 For relatively small applied magnetic fields, superconductors expel

flux. Meissner state

Avoid flux penetration.

At RF frequencies ->

excessive heating

state

Superheating Field

(Note: Magnetization curve for H increasing only)

- Flux free Meissner state is stable up to H_{c1}
- Favorable for flux to be deep in bulk above H_{c1}
- BUT surface energy barrier allows metastable state!

Superheating Field

Why a superheating field?

λ: B-field decay constant

Energy cost: creation of normal conducting vortex core
Energy benefit: flux from high magnetic field region into low magnetic field region

Selected Superconductors

- NbTi (magnet quality):
 - Lots of pinning centers H_{c2} ~15 T
 - T_c ~9-10 K, ductile

- Niobium (SRF quality):
 - Robust barrier to magnetic flux H_{sh} ~0.2 T
 - T_c ~9 K, ductile
- Nb₃Sn (can be either!):
 - Can be made with pinning centers $H_{c2} \sim 30 \text{ T}$
 - Predicted robust barrier to flux H_{sh} ~0.4 T?
 - T_c ~18 K, brittle

Fabrication of SRF Cavities

- Used in accelerators: Pb and Nb, either bulk or sputtered
- Many film deposition methods researched: ECR, ALD, CVD, HPCVD, MOCVD, HiPIMS, ebeam, thermal vapor diffusion, liquid diffusion, co-sputtering+annealing, cathodic arc deposition
- Many alternative superconductors considered

Experimental Properties of Promising Materials

Material	λ(0) [nm]	ξ(0) [nm]	B _{sh} [mT]	T _c [K]	ρ _n (0) [μΩcm]
Nb	50	22	210	9.2	2
Nb ₃ Sn	111	4.2	410	18	8
MgB ₂	185	4.9	210	40	0.1
NbN	375	2.9	160	16	144

Parameters for: Nb from [1] assuming RRR = 10; Nb₃Sn from [2]; NbN from [3]; MgB₂ from [4] and [5]. B_{sh} for Nb found from equation in [6] and for others calculated from [7]. B_c used to calculated B_{sh} found from [8] eq. 4.20.

- [1] B. Maxfield and W. McLean, Phys. Rev. 139, A1515 (1965).
- [2] M. Hein, High-Temperature Superconductor Thin Films at Microwave Frequencies (Berlin: Springer, 1999).
- [3] D. Oates, et al., Phys. Rev. B 43, 7655 (1991).
- [4] Y. Wang, T. Plackowski, and A. Junod, Physica C 355, 179 (2001).
- [5] X.X. Xi et al., Physica C, 456, 22-37 (2007).
- [6] A. Dolgert, S. Bartolo, and A. Dorsey, Erratum [Phys. Rev. B 53, 5650 (1996)], Phys. Rev. B 56, 2883 (1997).
- [7] M. Transtrum, G. Catelani, and J. Sethna, Phys. Rev. B 83, 094505 (2011).
- [8] M. Tinkham, Introduction to Superconductivity (New York: Dover, 1996).

Material parameters vary with fabrication. References were chosen to try to display realistic properties for polycrystalline films.

Multilayer Films

- Alternative geometries considered, including multilayer SIS' films studied in depth
- No significant increase predicted for maximum flux-free field [Posen et al. 2013, Kubo et al. 2013, Gurevich 2015]

拳Fermilab

Pulsed Quench Field

Radjo Frequency Magnetic Field Limits of Nb and Nb₃Sn S. Posen, N. Valles, and M. Liepe, *PRL* 115, 047001 (2015).

DC Flux Penetration

See Nick Valles's thesis, Cornell University, 2014

DC Flux Penetration

See Nick Valles's thesis, Cornell University, 2014

Fermilab Q₀-drop from DC Magnetic Field

After $B_{DC} = 0.3 T$

Takeaway

- Realistic expectation: $B_{max} \sim 0.2 \text{ T at walls of superconducting cavity to maintain high } Q_0$
- Alternative materials may increase limit up to 0.5 T with a few years of development

Possible Workaround

- Poloidal field coils
- Large field in cavity interior
- Smaller field at walls

